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and Russian crises of the late 1990s, and the 
Long-Term Capital Management (LTCM) deba-

cle, demonstrated the need to better understand market liquidity 
risk. Several methodologies have been suggested that include mar-
ket liquidity effects in value-at-risk. Some of them rely on bid-ask 
spreads (Bangia et al, 1999, and Monkkonen, 2000). These 
approaches raise the difficulty of gathering long time series of bid/
ask spreads for different portfolio sizes and securities. Moreover, 
they are derived from a micro view of the market, whereas liquidity 
is typically a system-wide effect, crying for a macro view. Another 
approach (Krakovsky, 1999) has the downside of relying on an 
empirical parameter, L, which has to be assessed by the traders 
themselves – no sure basis for risk control.

This paper aims to introduce a new and simple methodology 
for calculating a market VAR that includes liquidity effects. It 
relies on trading volume as the central parameter. The scheme has 
the threefold advantage of being intuitive, relying on accessible 
information and deriving from a macro view of the market.

In this paper, liquidity risk means market liquidity risk, as 
opposed to balance-sheet liquidity risk – that is, we shall talk of 
the danger that selling a large position may induce a price drop, 
due to insufficient absorbance capacity in the market.

The liquidity issue
In many markets outside of the very large stock exchanges, liquid-
ity is an issue – whether for western European non-blue-chip cor-
porate bonds or Asian convertible bonds. It is even more of an issue 
in very thin markets, such as Russian equity, where trading vol-
umes typically are a thousand times smaller than at the New York 
Stock Exchange. But even high-volume markets, such as the 
NYSE, are affected by liquidity risk in times of rare but intense 
crises – the realm of the risk manager. It hurts then all the more 
since it is unexpected. The giant yen/dollar market suffered sharp 
drops in liquidity during short, but intense, bouts of panic, such as 
October 1998, which left investors helpless and spreads yawning.

In table A, we give a few indicative figures, as a reminder of 

how varied volumes can be around the world and in different 
periods. The Russian figures are particularly low, even when 
account is taken of the fact that only about a quarter of all trans-
actions are reported to the Russian Trading System (RTS). 
Quickly unwinding a $50 million portfolio of shares would trig-
ger a larger adverse effect on prices at RTS than at the NYSE. The 
aim is to quantify this difference.

Assessing the potential impact of selling
In standard VAR, one records past daily price fluctuations, meas-
ures their theoretical effect on portfolio value and selects the 99% 
worst case. This is done with effective historical price changes, ie, 
when the portfolio was not sold. To adjust market VAR for liquid-
ity effects, one has instead to estimate the daily price changes that 
would have occurred, given market depth of the day, if one had 
sold the portfolio. These corrected returns should then include 
both components: the ‘normal’ price move of the day and the 
liquidity-driven, self-induced price move. The 99th percentile 
should be selected from these potential price changes.

To assess the impact on price of selling a portfolio is best done 
by working with supply and demand curves. By knowing these 
curves exactly in real time, then aggregating them over the time 
horizon (say, one day), the risk controller could fathom the impact 
that selling a portfolio would have, within any given day. They 
would just need to displace the supply curve by the number of 
securities that they intend to sell (in figure 1, shifting up the sup-
ply curve by a distance ΔN along the vertical axis).

However, getting to know the supply and demand curves can be 
difficult. Subscribers to some electronic exchanges, such as the Swiss 
Stock Exchange, can read real-time outstanding bids and offers, 
complete with price and volume, for the equity markets. But this 
cannot be expected to be the case for all instruments and locations. 
In the currency markets, no data is generally available. Also, one 
would need to know the evolution over time of the demand and sup-
ply curves’ shapes, as for yield curves, in order to derive VAR figures. 

In other words, the pragmatic VAR specialist cannot rely on 
exact supply and demand curves to assess liquidity risk. An 
approximation is needed. The approximation that we suggest here 
is to assume that the amount of money available on the counter-
party (buying) side over the trading day remains the same in case 
of selling, and that the amount of securities offered on the supply 
side rises by exactly the portfolio sold. 

Transaction exchange triangle
The situation can be expressed geometrically with a triangle (see fig-
ure 2). The total amount, A, paid for the securities in the given trad-
ing day and the total number, N, of securities sold on that day are 
the right-angled sides of the triangle. The trade-weighted average 
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price, P, of the share on this day is the slope of the triangle’s hypot-
enuse. This describes the situation when the portfolio is not sold.

If a supplementary portfolio containing ΔN shares is sold 
within the same day, a new exchange triangle forms, with A and 
N + ΔN as the right-angle sides. The new mean price of the day is 
given by the slope of the new hypotenuse P′ = A/(N + ΔN). As a 
consequence of the simplifying assumptions, only ΔN contributes 
to the price change triggered by the portfolio sale (no more money 
comes out on the demand side, ie, ΔA = 0).

Supply and demand curves
In figure 1, these simplifying assumptions are translated graphi-
cally by drawing the demand curve as a function inversely pro-
portional to price P. The number N of demanded securities is 
given by the formula N = (N0 × P0)/P, where N0 × P0 is the 
observed trading volume in currency units, without the investor 
selling. The supply curve is approximated as a horizontal line, 
shifted by the portfolio size ΔN when the investor sells.

The supply and demand curves in figure 1 are aggregated daily 
curves. Their intersection point has co-ordinates P0, the trade-
weighted mean price of the given day, and N0, the daily trading 
volume expressed in number of securities.

These assumptions about the supply and demand curves are 
conservative. They should not underestimate liquidity-induced 
price effects because the demand curve is actually expected to rise 
more, and the supply curve is expected to go down, for falling 
asset prices. They are practical, because the two figures (quantity 
of money and securities exchanged without the investor selling) 
are known: they are the trading volume of the day, in currency 
units and in number of securities. Trading volumes can be found 
for many asset classes. Daily US, European and Asian equity and 
bond figures are publicly released. The foreign exchange markets 
are trickier, but figures are released occasionally (in particular, the 
Bank for International Settlements’ surveys).

Quantifying liquidity-driven returns
With these assumptions, we can now calculate the liquidity-driven 
price falls that selling a portfolio within any day would cause, given 
market depth. These liquidity-driven returns can be used for deriving 
a pure liquidity VAR. We shall then include both effects, liquidity-
driven price moves and general market moves (those used in standard 
VAR), in order to get a complete, liquidity-adjusted, market VAR.

For the first step, the equations are:

 

P =
A
N

′P = P+ΔP =
A

N +ΔN
⇒

ΔP =
−A×ΔN

N × N +ΔN( )
ΔP
P

=
−ΔN
N +ΔN  

(1)

where A is the trading volume on a given day, in currency units, 
without investor selling; N is the trading volume on the same day, 
in number of securities, without investor selling; ΔN is the size of 
the investor portfolio (in number of securities) to be sold; P is the 
trade-weighted security price on a given day without investor sell-
ing; P′ is the trade-weighted security price on the same day with 
investor selling; and ΔP is the liquidity adverse effect on price, ie, 
the difference between P and P′.

Equation (1) implies that liquidity effects are felt when the 
portfolio size, ΔN, starts to be non-negligible compared with 
trading volume, N. In extreme cases, when the portfolio to be 
unwound is much larger than market depth, as for LTCM in Sep-
tember 1998, the equation shows, as expected, that the asset price 

could sharply drop to almost zero, effectively forbidding selling.
Within this formalism, one could also show the inverse effect, ie, 

letting prices rise by massively entering a shallow market. An inves-
tor suddenly entering into Russian equities with millions to invest 
could have a terrible time, multiplying the prices, but it would be 
difficult to get out unscathed. Indeed, buying a dollar amount ΔA 
under a trading volume A would, according to the same formalism, 
raise prices by an amount of about ΔP/P = +ΔA/A.

Aggregating liquidity and market returns
Now we combine liquidity-induced negative returns of equation 
(1) with the daily ‘general market moves’, ie, the ones used for 

a. mean daily traded volumes, averages over indicated 
periods
market daily volume ($ million)

russian stock exchange (rts), february 1999 5

russian stock exchange (rts), 2000 23

Poland stock market, february 1999 50

switzerland stock exchange (sWX), 1999 2,200

taiwan stock exchange (tsec), 1999 3,400

new york stock exchange (nyse), 2000 44,000

us treasury bonds, december 1999 186,000
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Security price P (transaction-weighted mean price)

Approximate demand curve, N = (P0 × N0)/P

Exact demand curve (unknown)

Exact supply curve
with investor

selling (unknown) Exact supply
curve without

investor selling
(unknown)

Approximate supply curves,
with and without investor selling

Pʹ = price with
investor selling

1 aggregated daily supply and demand curves, and 
approximated moves

A = amount of money paid for buying
securities S on given day (= trading
volume, in currency units)

N = number of securities S bought
on given day (= trading volume, in
number of securities)

P = average price (= mean price
weighted per transaction volume) of
security S on given day

DN = size of portfolio to be sold (in
number of securities)

Pʹ = new average price of S on given
day, if portfolio is sold

A

N DN

Slope = P = A/N

Slope = Pʹ =
A/(N + DN)

2 the exchange triangle and the effect of liquidity on 
price
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standard market VAR, the historical returns. The calculation is 
straightforward. On a given day, we have an average price P0 and 
a volume N0, so:

 

P0 =
A0

N0
′P1 = P0 +ΔP =

N0P0( )+N0 ×ΔPmarket
N0 +ΔN

⇒

ΔP
P0

=
N0

2 ×ΔPmarket − N0P0( )×ΔN
N0P0( )× N0 +ΔN( )  

(2)

where A0 is trading volume on initial day (in currency units) A0 = 
P0N0; N0 is trading volume on the initial day (in number of secu-
rities); ΔN is the size of the portfolio to be sold by the investor (in 
number of securities); P0 is the trade-weighted security price on 
the initial day; P′ is the trade-weighted security price on the next 
day (when the investor has sold); ΔP is the security price change 
between the initial day and the next day after the investor has 
sold; and ΔPmarket is the security price change between the initial 
day and the next day if the investor does not sell.

When the general market return is set to zero, one sees that 
equation (2) reverts to equation (1), as desired. Thus, we now have 
an expression giving both components of market risk: the return 
occurring when the portfolio is not sold, and the liquidity-driven 
return occurring when the portfolio is sold.

This approach is not too dissimilar to Krakovsky’s (1999). A 
close inspection of Krakovsky’s equation (2) and extensions 
reveals that the parameter L can be identified as the trading vol-
ume – expressed in number of securities, with the to-be-sold 
portfolio included, ie, L = N + ΔN. If this interpretation is cor-
rect, there is no need for the empirical parameter L to be assessed 
by traders. In his paper, Krakovsky allows his parameter L to vary 
with portfolio size, but without showing how to model this 
dependence. This dependence is clear in our formalism.

Liquidity-adjusted VAR: empirical results
From the new, liquidity-adjusted returns, it is straightforward to 
derive a liquidity-adjusted VAR. As an illustration, we calculate 
VAR for two portfolios, one in a liquid market and the other in 
an illiquid market, using historical VAR simulations. 

We synthetically built two single-stock portfolios, one of Swiss 
stocks, denominated in Swiss francs, and the second of Russian 
stocks, denominated in roubles. Both portfolios were worth 
Sfr100,000 on December 1, 2000. The first portfolio contained 
331 Zurich-traded shares of the financial services company Credit 
Suisse Group (CSGN). The second portfolio contained 6,306 
Moscow-traded shares of Russian oil concern OAO Lukoil 
(LKOH). We calculated liquidity-adjusted historical returns 
from equation (2) and derived the 99th percentile of the return 

distribution (the VAR) and the corresponding shortfall (tail 
expectation). We then compared these figures with standard VAR 
to assess the impact of liquidity. In a second step, we repeated the 
calculation with portfolios 10 times larger (worth Sfr1 million on 
December 1, 2000), ie, comprising 3,310 CSGN shares and 
63,060 LKOH shares, to make clear that liquidity-adjusted VAR 
is dependent on portfolio size.

We used equity price and trading volume data from July 11, 
1997 to  November 20, 2000, ie, 882 days. The prices in the time 
series were close values – an approximation for daily mean prices. 
There was no need to test multi-instrument portfolios since VAR 
aggregates the same way with liquidity-adjustment.

We selected stocks with very different market liquidities. CSGN 
stocks traded a median daily volume of Sfr270 million during our 
time interval. Extreme values were Sfr50 million and Sfr2,700 mil-
lion. Median daily trading volume for Lukoil shares was Sfr4 mil-
lion, with extreme values of Sfr0.01 million and Sfr60 million.

The Swiss and Russian portfolios, equal in value at the end of the 
period (December 2000), need not have been so over the three-year 
period, of course. The number of shares was kept constant. The aim 
was just to build portfolios of roughly comparable magnitudes. 

The VAR figures we calculated here are local-currency based, 
ie, they are Swiss franc- and rouble-based. The results are shown 
in table B. The different profit/loss distributions, with and with-
out liquidity effects, constructed to extract the VAR and shortfall 
figures are displayed in figures 3 and 4.

As expected, liquidity wields much more impact with larger 
portfolios and thinner markets. It is felt more heavily on the Rus-
sian Stock Exchange than on the Swiss one, and is measurably 
larger for bigger portfolios. The sale of the Sfr100,000 and Sfr1 mil-
lion portfolio has a negligible effect on prices on the Credit Suisse 
shares market, as is clear when bearing in mind the typical trading 
volume of 270 million. But liquidity effects cannot be neglected for 
the same portfolio sizes on the Lukoil shares market with 4 million 
volume. Liquidity risk dramatically compounds Russian VAR fig-
ures. With standard VAR, 16% of the second portfolio value is at 
risk, whereas with liquidity considered, 81% of the value is at risk!

Not only is the liquidity effect heavier in the shallower market, 
it also upsets the structure in the profit/loss distribution tail. In 
the Russian market, worse returns in the tail of the distribution 
were not the same with and without liquidity effects. In the Swiss 
market, the relative order of the price returns in the tail stayed 
unchanged. This implies that, at least in thin markets, liquidity 
has its own, autonomous dynamic. It does not merely pull down 
all returns by amounts proportional to market moves. On some 
days, liquidity falls when prices do not fall so much, and, 
inversely, liquidity might fall much less than prices on certain 
times. Therefore, a separate modelling of liquidity makes sense.

The VAR of the small portfolio corresponds to a VAR without 
liquidity effects, ie, to standard VAR. 

Monte Carlo versus historical simulations
Historical simulations seem to offer some advantages over Monte 
Carlo simulations, as far as liquidity-adjusted VAR is concerned. 
For Monte Carlo simulations, a mean value and a standard devia-
tion of trading volume has to be calculated, as for other risk factors. 
An assumption then has to be made about the distribution func-
tion of the trading volume. This is difficult because that function is 
unknown and needs not be similar to that of the returns. The cor-
relation of volume with other risk factors has to be derived as well. 
To avoid the well-known unstable correlations problem (the danger 

b. liquidity-adjusted 99% value-at-risk and 99% shortfall 
for different portfolio sizes on the swiss and russian 
stock markets
measuring liquidity risk standard 

without 
liquidity
effects*

liquidity-adjusted

Portfolio of 
sfr100,000

Portfolio of  
sfr1 million

csgn shares: 99% Var –6.8% –7.3% –7.4%

csgn shares: 99% shortfall –8.4% –9.2% –9.4%

lKoH shares: 99% Var –15.6% –30.2% –80.8%

lKoH shares: 99% shortfall –20.4% –49.8% –88.3%

All figures given in relation to portfolio size
* Equivalent to very small position with liquidity effects
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that correlations are higher in crisis times), a safe choice could be to 
assume correlations of one between price and liquidity.

Historical simulations offer the clear advantage of correctly 
mirroring correlation between market risk and liquidity risk, and 
the distribution function of the trading volume.

Highly illiquid instruments
For relatively liquid instruments, such as the main currencies and 
equities, the one-day time horizon works fine to obtain a VAR fig-
ure. For relatively illiquid instruments, such as non-blue-chip cor-
porate bonds, which change hands a few times a month at most, 
one should divide the monthly volume by 20 to obtain a proxy for 
daily data. Of course, this reduces the observed volume volatility. 
In historical simulations, this leads several successive daily returns 
to be shifted by the same amount, thus smoothing out extreme 
moves and hence shortening the profit/loss distribution tail. On the 
other hand, using effective daily volumes would make no sense. 
Zero-volume days would be modelled as 100% negative returns in 
case of portfolio selling, which would incorrectly inflate the VAR 
figures. In any case, the problem of zero-volume days is not specific 
to liquidity-adjusted VAR; since they lack a price, these days repre-
sent a problem in standard VAR as well.

As a better fix, one may expand the VAR time horizon so that 
each time window always contains at least one trade.

Time scaling of VAR
The conversion of one-day into 10-day VAR figures is mostly 
done at banks through multiplying daily VAR figures by the 
square root of 10, following the rules of the random walk model. 
Liquidity-adjusted VAR scales differently in time. The purely 
liquidity component gets smaller for larger time intervals, in rela-
tive terms, because it is inversely proportional to time.

To calculate 10-day liquidity-adjusted VAR, one should combine 
the empirically observed 10-day standard returns with the 10-day 
liquidity returns (obtained by adding the trading volumes of 10 
succeeding days). This would be the proper, direct way, but would 
require much more data, extending further back into the past. 

As an approximation, one might multiply the daily market returns, 
ΔPmarket/P, by √t (in our case, t = 10) and the trading volumes, N, by t 
in equation (2). When these changes are done, it is seen in equation 
(2) that the liquidity component of the return is proportional to 1/t. 
As the market component of the returns is proportional to √t for 

larger time horizons, liquidity-adjusted VAR tends towards standard 
VAR. This makes sense: the longer the time available to unwind a 
position, the less the loss suffered through volume effects. 

Further refinements
Further refinements could include smarter modelling of the sup-
ply and demand curves. Typically, one could assume that the 
demand curve rises faster for lower prices, in order to obtain 
smaller liquidity adjustments to returns. Instead of the function 
N = N0 × (P0/P) one could set, eg, N = N0 × (P0/P)a where the 
parameter a would be some positive constant. Such an improve-
ment would be difficult to calibrate, though. The constant a 
should then be determined through empirical studies, in a way 
similar to what is done in Persaud (2000). It might change with 
time and might be different for each instrument.

Concluding remarks
The strange thing about liquidity risk is that, when disaster strikes 
and trading volume shrinks, market theories no longer apply 
since the market itself vanishes. Market specialists understanda-
bly dislike contemplating market disappearance, but it must be 
modelled all the same.

The approach presented here has the clear advantages of being 
intuitive, easy to implement and conservative. It relies on the 
trading volume, which is a macro measure of the market. It is, of 
course, a first approximation but, in new territory, first approxi-
mations are what is needed by risk managers. n

this article first appeared in Risk in october 2001. at the time, david 
cosandey was head of asset/liability management at Zurich cantonal bank. 
He is now a risk manager at bank morgan stanley in Zurich. email: david.
cosandey@morganstanley.com
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